Skip to content
The Kids Research Institute Australia logo
Donate

Search

Research

Enhanced Neutralizing Antibody Responses to Rhinovirus C and Age-Dependent Patterns of Infection

Rhinovirus (RV) C can cause asymptomatic infection and respiratory illnesses ranging from the common cold to severe wheezing. The aim was to identify how age and other individual-level factors are associated with susceptibility to RV-C illnesses. Longitudinal data from the COAST (Childhood Origins of Asthma) birth cohort study were analyzed to determine relationships between age and RV-C infections. Neutralizing antibodies specific for RV-A and RV-C (three types each) were determined using a novel PCR-based assay.

Research

The intersect of genetics, environment, and microbiota in asthma-perspectives and challenges

In asthma, a significant portion of the interaction between genetics and environment occurs through microbiota. The proposed mechanisms behind this interaction are complex and at times contradictory. This review covers recent developments in our understanding of this interaction: the "microbial hypothesis" and the "farm effect"; the role of endotoxin and genetic variation in pattern recognition systems; the interaction with allergen exposure; the additional involvement of host gut and airway microbiota; the role of viral respiratory infections in interaction with the 17q21 and CDHR3 genetic loci; and the importance of in utero and early-life timing of exposures.

Research

OPTIMUM study protocol: an adaptive randomised controlled trial of a mixed whole-cell/acellular pertussis vaccine schedule

Combination vaccines containing whole-cell pertussis antigens were phased out from the Australian national immunisation programme between 1997 and 1999 and replaced by the less reactogenic acellular pertussis (aP) antigens. In a large case-control study of Australian children born during the transition period, those with allergist diagnosed IgE-mediated food allergy were less likely to have received whole-cell vaccine in early infancy than matched population controls (OR: 0.77 (95% CI, 0.62 to 0.95)). We hypothesise that a single dose of whole-cell vaccine in early infancy is protective against IgE-mediated food allergy.

Research

Transplacental Innate Immune Training via Maternal Microbial Exposure: Role of XBP1-ERN1 Axis in Dendritic Cell Precursor Programming

We recently reported that offspring of mice treated during pregnancy with the microbial-derived immunomodulator OM-85 manifest striking resistance to allergic airways inflammation, and localized the potential treatment target to fetal conventional dendritic cell (cDC) progenitors. Here, we profile maternal OM-85 treatment-associated transcriptomic signatures in fetal bone marrow, and identify a series of immunometabolic pathways which provide essential metabolites for accelerated myelopoiesis.

Research

Single cell transcriptomics reveals cell type specific features of developmentally regulated responses to lipopolysaccharide between birth and 5 years

Human perinatal life is characterized by a period of extraordinary change during which newborns encounter abundant environmental stimuli and exposure to potential pathogens. To meet such challenges, the neonatal immune system is equipped with unique functional characteristics that adapt to changing conditions as development progresses across the early years of life, but the molecular characteristics of such adaptations remain poorly understood.

Research

LPS binding protein and activation signatures are upregulated during asthma exacerbations in children

Asthma exacerbations in children are associated with respiratory viral infection and atopy, resulting in systemic immune activation and infiltration of immune cells into the airways. The gene networks driving the immune activation and subsequent migration of immune cells into the airways remains incompletely understood. Cellular and molecular profiling of PBMC was employed on paired samples obtained from atopic asthmatic children during acute virus-associated exacerbations and later during convalescence.

Research

Maternal diet modulates the infant microbiome and intestinal Flt3L necessary for dendritic cell development and immunity to respiratory infection

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell recruitment and perturbation of regulatory T cell expansion in the lungs.

Research

Lipopolysaccharide-induced interferon response networks at birth are predictive of severe viral lower respiratory infections in the first year of life

Appropriate innate immune function is essential to limit pathogenesis and severity of severe lower respiratory infections (sLRI) during infancy, a leading cause of hospitalization and risk factor for subsequent asthma in this age group.

Research

Rare variant analysis in eczema identifies exonic variants in DUSP1, NOTCH4 and SLC9A4

Previous genome-wide association studies revealed multiple common variants involved in eczema but the role of rare variants remains to be elucidated. Here, we investigate the role of rare variants in eczema susceptibility. We meta-analyze 21 study populations including 20,016 eczema cases and 380,433 controls. Rare variants are imputed with high accuracy using large population-based reference panels.

Research

Innate Immune Training for Prevention of Recurrent Wheeze in Early Childhood

Pat Deborah Holt Strickland PhD, DSc, FRCPath, FRCPI, FAA PhD Emeritus Honorary Researcher Head, Pregnancy and Early Life Immunology Patrick.Holt@